Multi-stakeholder Collaboration in Agricultural Water Management: Solutions/Advance SDGs

Kathy Boomer, Ryan Comella, Catherine Maxwell and Shannyn Smith Peter McCornick, Christopher Neale, Frances Hayes, DWFGI John Farner, Netafim

Our Environmental Water Challenges:

NASA Data Reveals Most Major Aquifers Depleting Faster Than They Recharge

June 23, 2015 | By Linnea Bennett

LOW MISSISSIPPI RIVER LEVEL MPACTING SHIPPING, COMMODITIES

84% of global freshwater species populations lost since 1970: can we 'bend the curve' of this trend? SEPTEMBER 25, 2020

increased dramatically since 1950

GLOBAL AGRICULTURAL WATER SUSTAINABILITY GOAL: Protect and restore natural waters/enhance agricultural production, domestic water supply, and biodiversity. Alternate Titles:

Advancing Global Theory for Local Implementation

Developing a Systems-Based Framework for Sustainability All Hands-On Deck: Learning While Doing

Framing the Conversation:

Williams, B. K., R. C. Szaro, and C. D. Shapiro. 2009. Adaptive Management: The U.S. Department of the Interior Technical Guide. Adaptive Management Working Group, U.S. Department of the Interior, Washington, DC.

Global Water Sustainability Goal:

GOAL: PROTECT AND RESTORE NATURAL WATERS/ENHANCE AGRICULTURAL PRODUCTION, DOMESTIC WATER SUPPLY, AND BIODIVERSITY

Inextricably-Linked Objectives:

- Maximize near-surface water storage/minimize deep aquifer depletion.
- Limit soil carbon loss and enhance carbon sequestration
- Reduce nutrient loss via leaching and greenhouse gas
 emissions
- Restore habitat suitability for targeted terrestrial and aquatic species of concern
- Limit on-site and downstream vulnerability/extreme weather events
- Maintain adequate, nutritious crop production

Global Water Sustainability Goal:

GOAL: PROTECT AND RESTORE NATURAL WATERS/ENHANCE AGRICULTURAL PRODUCTION, DOMESTIC WATER SUPPLY, AND BIODIVERSITY

Proposed Implementation Strategy:

Optimize near-surface terrestrial water storage through agricultural water management (precision irrigation and conservation drainage)/minimize withdrawals of irreplaceable deep groundwater and create more natural and resilient (diffuse and continuous) catchment flow regimes.

Precision Irrigation:

Need a diagram providing an overview of precision irrigation practices, one that parallels the next conservation drainage slide

Conservation Drainage:

https://www.nature.org/content/dam/tnc/nature/en/documents/EOF_ExecutiveSummary_LORES_SPREADS.pdf

Challenge: Low Adoption Rates

Analysis of adoption of Check for updates conservation agriculture practices in southern Africa: mixed-methods approach Adane H. Tufa¹⁺¹, Joseph S. Kanyamuka¹, Arega Alene², Hambulo Ngoma¹, Paswel P. Marenya⁴, Christian Thierfelder

Happy Banda¹ and David Chikoye

TVHL Original Research PUBLINED 27 April 2023 INV 10.3389/huth.2023.11

Frontiers | Frontiers in Sustainable Food System

OPEN ACCE

Modified from Table 7: Adoption of Conservation Actions in South Africa among trained and non-trained agricultural households.

	Malawi Non-Trained/ Trained	Zambia Non-Trained/ Trained	Zimbabwe Non-Trained/ Trained
Minimal Tillage	3/9%	24/60%	30/46%
Mulching	2/18%	24/67%	14/34%
Rotation	55/71%	76/85%	74/82%
Intercropping	63/69%	20/41%	30/58%

System-Based Management

ESSENTIALS:

- Reliably compares risk-based trade-offs of agroecosystem services for alternative management actions.
- Informs optimal management for given climate and landscape conditions based on location and climate – at a spatial and temporal scale relevant/operators.
- Estimates cumulative impacts/benefits/crop, soil, and watershed health within a project area.

Decision Context:

Success requires engaging producers and understanding the relative influence of industry, consumer demand, and policies on their decisions.

Provocateur Panelists:

Tom Iseman **Global Freshwater Program for The Nature Conservancy**

Nick Brozovic University of Nebraska

Charlotte de Fraiture UN IHE Delft Institute

Nora van Cauwenbergh **UN IHE Delft Institute**

Thank you!

Ceres

Directo

Multi-stakeholder Collaboration in Agricultural Water Management: Solutions/Advance SDGs

- How do we frame the challenge to foster collaboration and investment?
 - Can we agree on the goals, objectives, and implementation strategies?
- What system frameworks have been most successful in engaging stakeholders and assessing success? Key components?
- What key challenges/uncertainties should we investigate as we work with partners to implement practices?

Global Water Sustainability Goal:

GOAL: PROTECT AND RESTORE NATURAL WATERS/ENHANCE AGRICULTURAL PRODUCTION, DOMESTIC WATER SUPPLY, AND BIODIVERSITY

Proposed Implementation Strategy:

Optimize near-surface terrestrial water storage through agricultural water management (precision irrigation and conservation drainage)/minimize withdrawals of irreplaceable deep groundwater and create more natural and resilient (diffuse and continuous) catchment flow regimes.

Response Panelists:

Moshi Berenstein Netafim, France

Madhu Rejesh The Coca-Cola Company

Jessica Christiansen Bayer Crop Science

Thank you!

Multi-stakeholder Collaboration in Agricultural Water Management: Solutions/Advance SDGs

- What are some of the broader co-benefits of agricultural practices that promote more efficient water use in agriculture?
- What ideas from the first panel resonated with insights from your work? What might have been missed? What presents consternation or challenges to advancing our initiatives?